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ABSTRACT

This report describes the statistical performance of several radar-based adap-
tive detection schemes in both stationary and nonstationary noise and interference
environments. The detectors under study must be able to correctly determine the
presence of a target in a range gate with a high degree of probability given that the
probability of misclassification is a fixed small value. The hostile noise environment
is assumed to consist of possibly time-varying, spatially correlated interference along
with Gaussian background noise. In a typical radar environment, the mean value of
the returned radar signal and the noise covariance matrix are unknown parameters;
therefore, generalized likelihood ratio test procedures were used to develop deci-
sion rules that meet the Neyman-Pearson criterion. Three major cases of interest
were examined. First, the single-pulse test developed by Kelly' is reviewed. The
multiple-pulse return test case is extremely complicated and was divided into dis-
tinct detector forms: noncoherent and coherent. The performance of each detector
is a function of the signal-to-noise ratio, the number of radfr pulse returns used in
the decision rule, and the quality of the covariance estimate. Aooesi¶on For
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1. INTRODUCTION

This section establishes the basic premises of this investigation. The intent of this study is to
quantify the statistical performance of several detectors derived from a generalized likelihood ratio
(GLR) test. A general overview of the detection process is presented, and the terminology and
assumptions used in the report are defined. Four separate cases are considered, and the general
problem definition, solution techniques, and associated results are briefly discussed for each.

1.1 General Overview

This report addresses the development and analysis of radar-based adaptive decision rules.
The particular concern is to determine whether the returned radar signal indicates the presence
of a target in the range gate currently under observation. If detector output exceeds a threshold,
certain actions such as tracking can be initiated. Because the returned signal includes a possible echo
amplitude proportional to target radar cross-sectional area, directional interference, and Gaussian
sky noise, a statistical approach to decision making is taken to minimize the probability of an
incorrect decision.

It is important to note that the term "adaptive" used in the current context refers to the
time dependency of the actual parameter values used in the decision rule. Adaptive does not refer
to the time dependency of parameter value updates that occur in algorithms such as the least mean
square and recursive least squares [1]. To expand on this terminology further, the scalar output of
an adaptive array processor is defined as

Y, = w(I)

where wi is the weight vector and xi is the data vector.

At each sample instant the adaptive algorithms update the weight vector, the value of which
is determined according to a specified cost function. This study deals purely with raw input data
and does not form the adaptive array output. Estimates of the parameters found in the subsequent
decision rules are time varying. Also, the decision rule contains forms similar to the optimum
weight vector for the known covariance matrix case.

In almost all cases, this report is occupied with the presence of noise and interference that
causes errors in the receiver output. For a system in which the signal is corrupted by noise, it is
most desirable that the receiver minimizes the probability of error. Statistical decision theory can
be 'ised to obtain expressions for the probability of error, i.e., the probability of misclassifying the
received binary signal, and the probability of detection (PD) [2). The misclassification error that is
of most interest to radar system analysts is the probability of false alarm (PFA). This error occurs
when the decision rule indicates that a target is present when actually it is not. In practice, radar
systems typically require a PFA on the order of 10-6.
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Several additional levels of complication cp.i '.- i.dded wo this scenario. Assuming white
Gaussian receiver noise and a multiple-elemen' --.- ar.ay, the probability density function
(pdf) of the received data is uniquely specifieci b, .wo 1arameters-the mean value vector and
the covariance matrix. The mean and covariance matrix are also referred to as the "first- and
"second-order" noise statistics. If on- --• both parameters are unknown and/or time varying, the
analysis can be become extreme) ,Jii!Ecj ý, if not intractable. This report focuses on examining
conditions where the noise enviro,.:. ',t is nonstationary, i.e., where the first- and/or second-order
noise statistics are time varying. In addition, the true values of the parameters are unknown.
Section 1.2 describes the general radar system model used in this investigation.

1.2 Radar System Model

A comprehensive review of basic radar principles and operations can be found in sources
such as the Radar Handbook [3]. A radar system scans a three-dimensional region of space, the
coordinates of which are azimuth, elevation, and range. The search volume is divided into segments
called range bins or range gates. To detect a target, a sequence of modulated pulses is emitted and
the system then listens for the returned echo. The time between transmission and echo reception
corresponds to the total propagation delay that is a function of distance. The received data are
processed and input to a decision rule to determine whether a target is present in the range bin
under observation. If the output of the decision rule is greater than some predefined threshold with
a value that is proportional to the desired false alarm rate, a "hit" is declared. In general, if a
sufficient number of hits occurs in a range gate, further action is taken.

1.2.1 Array and Receiver Structure

The radar system under examination is an array with N elements that are connected to
separate receiver channels. The array configuration is not specified but a generalized steering
vector is denoted as the N-vector p. The steering vector defines the directional orientation of
a possible target and is determined from target position and array geometry. By not assuming
any antenna characteristics or special array configurations, the problem can be analyzed in its
most general form; however, for subsequent simulation studies a particular array geometry will
be designated. The receiver section of the radar system is assumed ideally to demodulate, match
filter, and sample the incoming planar narrowband waveform. The curren.t model is idealized to
concentrate solely on first-order effects.

If the target is present in the range bin currently under observation and designated as hypoth-
esis H1, the received signal consists of N. modulated pulses plus noise. Under the null hypothesis,
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designated as He, the received signal consists solely of noise. A sample of the matched filter out-
puts at time instant i, i = 1,..., Np, is denoted as the complex 2 N-vector z1 . The vector zi is
referred to as a primary data vector. The samples of the matched filter outputs are assumed to
be uncorrelated with respect to time, but there can be time-varying spatial correlations among the
multiple receiver channels.

In radar applications the matched filter output, which directly corresponds to the complex
returned signal amplitude, is not known a priori and as such must be treated as an unknown pa-
rameter. The analysis is restricted to the case where the returned signal amplitude is a nonrandom
variable, i.e., the target is nonfluctuating: therefore, Swerling fluctuating target distribut:on models
[4] are not included in this analysis. The complex returned signal amplitude is assumed Unnstant
over the Np observation interval, implying a constant radar cross-sectional area. The results Ut,-
tained here can be extended to the fluctuating case using the Swerling models at the expense of
increased complexity.

1.2.2 Noise Environment

The statistical characterization of the received signal is now examined. The noise environment
is assumed to be composed of Gaussian background noise and/or directional interference such as
jamming. Therefore, the individual matched filter outputs are independent complex Gaussian
random variables (r.v.'s). A complex Gaussian r.v. possesses a circularly symmetric pdf with the
real and imaginary parts being independent and each part having t. variance equal to a'/2. Thus
a complex r.v. has variance a 2 given the preceding definition. The N-element primary data vector
zi is defined to be complex multivariate Gaussian-distributed with its N x N covariance matrix
denoted as Mi = E{(z, - i,)(zi - t.i)1}[ 5]. The expected value of zi is 0 under Ho and bp under
H, for all i. The term b is the complex matched filter amplitude given that a target is present in
the range bin, and p is the steering vector. As stated previously, the true value of b is unknown.
The true covariance matrix is also unknown and possibly time varying. Hence, the notation M,
indicates the time-varying nature of the noise environment.

The time-varying nature of the second-order statistic implies nonstationarity. As a result,
techniques that are dependent upon wide-sense stationarity assumptions cannot be applied [6]. In
particular, ensemble averaging is not a valid technique if the noise environment is nonstationary.
A nonstationary environment can be beest illustrated by an example. The power associated with a
directional interference source can fluctuate throughout the observation interval, and averages of
the sample covariance matrix would not approach the true covariance matrix in the limit. Only
over sampling intervals where the source intensity is constant will an estimate based upon averaging

2The matched filter output has in-phase and quadrature components that give rise to the complex
representation.
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be valid. An extreme case of a nonstationary environment is that of a blinking jammer where the
jamming power is randomly switched ON and OFF. (This scenario is investigated in Section 4.)

In the sequel no assumptions are made abcut the structure of the covariance matrix. By
not imposing any predefined covariance structure, e.g., the sum of dyads plus the identity matrix,
an unconstrained maximization of the likelihood function can be performed with respect to this
unknown covariance matrix. The lack of constraints will be shown to lead to the sample covariance
matrix as the estimate of the true covariance matrix at time instant i.

1.2.3 The Decision Rule

Suppose a binary hypothesis test is to be performed on a "data" vector x. The general form
of the pdf of x is known but one or more of the true parameter values of the distribution are
unknown. To determine whether the data belong to Ho or Hi, they are processed and the resulting
output is compared to a threshold. The GLR test procedure is a reasonable solution to a problem
of this form. Although not guaranteed to be optimal, the GLR test provides a general formulation
for problems that contain unknown parameters [2].

The GLR is defined as the quotient of the joint pdf of the data vector x, assuming hypothesis
HI ; and the joint pdf of the data, assuming hypothesis Ho. The terms 6 1 and 6o are defined as
the vectors of unknown parameters under the respective hypotheses. The numerators and denomi-
nators of the ratio (the likelihood functions) are then maximized independently with respect to the
unknown parameters:

sup pI(x;9eIHI)

GLR = el(2)
Sup po(x; oI)()
EOo

The maximum likelihood estimates (MLEs) are the terms that maximize the respective joint pdf's
in Equation (2). For example, the MLE of the mean assuming a Gaussian pdf is simply the sample
mean. The MLE of each unknown parameter is then substituted into the likelihood ratio in place
of the true parameter value. Thus a decision rule is obtained. Using x as the input, the output
of the decision rule is compared to a threshold. If the output exceeds the threshold, Hlis chosen,
otherwise the null hypothesis is chosen.

The statistical performance of the GLR test is measured in terms of PD and PFA; in many
cases it is quite difficult to obtain their exact expressions, and one may resort to approximations
or simulations to obtain these measures of performance.

1.3 Case Studies

This section previews the four cases to be examined. For each case, a brief overview is
presented and pertinent assumptions or approximations are stated. The general form of the solution
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and important results are discussed. This information can be found in Table 1 and complete details
can be found in the appropriate sections.

TABLE 1

Case Study Summary

No. Noise
Case oftometPuse Of Environment comments

Pulses

1 1 N/A PD and PFA expressed in terms of closed-form expressions

2 Np Stationary Can be transformed to Case 1 via unitary transformation

3 Np Nonstationary Noncoherent structure, exact PFA expression, PD via simulation

4 N, Nonstationary Coherent structure, PD and PFA via simulation

1.3.1 Case 1: The Single Pulse

This section examines the GLR test-based decision rule for one data sample. This case has
been extensively studied by Kelly [7,8]. These results will be completely reproduced in Section 2
to provide a framework for subsequent analyses. Exact expressions for the PD and the PFA are
obtained for this case. The PD is conveniently expressed as a function of signal-to-noise ratio (SNR)
and the threshold value corresponding to a specified PpA is evaluated using the incomplete gamma
function [31.

Some basic terminology is now defined. A sample of the N matched filter outputs correspond-
ing to single return is denoted as the N-vector z. The expected value of the complex multivariate
Gaussian r.v. z under H, is bp and 0 under Ho. The complex returned signal amplitude b is
unknown. In addition, the covariance matrix under each hypothesis is unknown. The true covari-
ance matrices are designated as M, and Mo, respectively. These unknown parameters must be
estimated according to GLR test methodology.

From basic detection and estimation theory, the MLE of an unknown parameter asymptot-
ically approaches the true parameter value, i.e., it is a consistent estimator. For the multivariate
Gaussian distribution, the MLE of the covariance matrix is the sample covariance matrix that is
a consistent estimator. In many cases, the decision rule obtained from GLR test procedures is
identical in form to a decision rule obtained w,,er, the covariance matrix is assumed known except
that the sample covariance matrix replaces the true covariance matrix in the decision rule. There-
fore, the "quality" of the covariance estimate will play a key role in detector performance in that a
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"better" estimate will enable the GLR-based detector performance to approach that of the known
covariance case.

In an attempt to improve detector performance in cases where the true covariance matrix is
unknown, Kelly proposed augmenting the primary data vect.or with K additional data samples that
are assumed to be free of signal returns. These additiona': samples are taken from K range gates
that are in close proximity of the range gate currently under observation. These supplementary
vectors are defined as secondary vectors and are denoted as z(k), k = 1,.. , K. There are now
K + 1 terms available for covariance matrix estimation at a particular time instant.

Given sufficient range and spatial resolution, it is not unreasonable to assume that multiple
targets would be sparsely distributed. As a result, each N-element secondary vector is assumed to
be zero-m -an and possess the same covariance matrix as the primary vector, and each secondary
vector Is statistically independent of the primary vector and the other K - I secondaries. These
assumptions are realistic and significantly reduce the complexity of the subsequent analysis.

The GLR test for the single-pulse case is now formulated. The respective likelihood functions
are the joint pdf of the primary vector and the K secondary vectors under under each hypothesis.
Under HI, the joint pdf is the product of the primary vector nonzero-mean multivariate Gaussian
pdf and K identical zero-mean multivariate Gaussian pdf's. Under Ho, the joint pdf is simply the
product of K + 1 zero-mean multivariate Gaussian pdf's.

The GLR test procedure requires that the unknown parameters be replaced by their MLEs.
First, each likelihood function is maximized with respect to the unknown covariance matrix while
holding the returned signal amplitude fixed. The resulting MLEs are the sample covariance ma-
trices. Note that the GLR test procedure leads directly Wo the sample covariance matrix form,
which is an unbiased estimator and asymptotically approaches the true covariance. Therefore, the
inclusion of the K additional secondary vectors yields a more accurate estimate of the covariance.

Estimates of the covariance matrices are substituted into the likelihood functions in place
of the true covariar.ce matrices. Given the multivariate Gaussian distribution assumption, the
likelihood ratio at this point is the quotient of the determinant of the MLE of the covariance under
Ho and the determinant of the MLE of the covariance matrix under Hi. The MILE of the covariance
matrix under H, is still a function of the unknown returned signal amplitude. This problem is now
equivalent to the Wilks' Lambda test commonly found in statistical literature [101. For this case,
the MLE of b is equivalent in form to the minimum variance unbiased estimator of the returned
amplitude. Substituting the MLE of b into the test yields the test form that will be the basis of
the single-pulse analysis.

Under H1, the final form of the single-pulse test is statistically equivalent to the inverse of
a noncentral P r.v. conditioned on the O-distributed loss factor p. This loss factor arises from
the need to estimate the covarlance matrix. Reed, Mallet, and Brennan have extensive!y studied
this r.v. and have shown that estimating the covarie.nce matrix effectively reduces the available
SNR to the detector, resulting in performance degradation [11]. Section 2 shows that as the
number of secondary vectors used for covariance estimation increases, estimation loss decreases
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and detector performance approaches that of the known covarlance (matched filter) case. Under
the null hypothesis, the test is statistically equivalent to a central / r.v. Also, exact expressions
for the PFA and PD are derived in Section 2.

1.3.2 Case 2: Multiple Pulses in a Stationary Environment

The test for this case uses Np observation intervals to make a decision. By making the
following assumptions, this problem can be transformed into a structure identical to that described
in case 1. First, the complex returned amplitude b is assumed constant for the duration of the
test. Second, for this case a wide-sense stationary noise environment is assumed over the entire
observation interval; therefore, the second-order noise statistic, the true covariance, does not vary
as a function of time. The data are assumed to be statistically independent of the noise and
interference.

Suppose an N x N, matrix is formed, consisting of Np statistically independent primary
vectors and collect K secondary data vectors during the observation intervals. It can be shown
that postmultlplication of this primary data matrix by an appropriate data-dependent unitary
transformation results in the rotation of the mean value component of each Np primary vector into
the primary data matrix first column position [12]. The remaining Np - 1 primary vectors are now
signal-free or equivalently, they are zero-mean vectors. Thus the Nppulse test has been transformed
into the single-pulse test form but with K + Np - 1 zero-mean secondary vectors. The same PD
and PFA formulas as derived for case 1 can be applied.

For large Np, the additional Np - 1 vectors used for covariance estimation will significantly
reduce estimation loss. Of course, secondaries obtained from each observation interval (Np x K) can
be used for the covariance estimate, but the additional memory and computational requirements
could be expensive. The stationarity assumption allows the primary data vectors themselves to be
used to improve the covariance estimate.

Because the case 2 test can be transformed into a previously solved problem, the analysis is
included in Section 2. In either case, improved covariance estimation results in improved detector
performance.

1.3.3 Multiple Pulses in a Nonstationary Environment

When considering the multiple-pulse test, a nonstationary noise environment rules out the
solution technique used for case 2. A unitary transformation cannot be applied to the primary data
matrix because each vector is no longer statistically identical; therefore, the discussion continues
with the general formulation of the GLR for multiple-pulse conditions where there are numerous
unknown parameters.

The sampled data are assumed statistically independent. Due to this assumption, the like-
lihood functions used to form the GLR are simply the product of the Np likelihood functions
associated with each data sample. If the noise is Gaussian, each of the Np likelihood functions
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takes on the form of the multivariate Gaussian distribution. GLR test procedures indicate that
the likelihood function for the complete data set under each hypothesis must then be maximized
with respect to each unknown parameter. In the case where each unknown parameter varies as a
function of time, maximization of the overall likelihood function is equivalent to maximizing each
of the Np likelihood functions independently. If one or more of the unknown parameters remains

coastant, however, the maximization process can become quite difficult or nearly impossible.

For the problem under investigation, the true covariance matrix is assumed to be unknown
and time varying. As previously discussed, the signal amplitude is constant over the complete ob-

servation interval. The MLE of each of the Np covariance matrices can be evaluated by maximizing
the likelihood function under each hypothesis at each time instant. The MLE of each covariance
matrix is the sample covariance matrix obtained using the primary vector and the K secondary

vectors; however, because the signal amplitude is constant, the maximization of the GLR with
respect to this unknown parameter requires the solution of a 2Np-degree polynomial. For even a
relatively small N,, the problem is unyielding.

Two possible techniques were developed to deal with this problem. First, allow the model for
the returned amplitudes be time varying. This modeling assumption enables the likelihood ratio

to be expressed as the product of Np independent ratios, which results in the same form as the
ratio found in Equation (2). This reformulation of the problem is the basis of the case 3 analysis.
Second, do not allow the returned amplitude model to be time varying (the actual condition for a
constant radar cross-sectional area). After maximizing the test with respect to the Np unknown
covariances, the test can be expressed in terms of a series expansion using an algebraic identity.
The series expansion approach is the basis of the case 4 analysis. These two cases are now discussed
in greater detail.

Case 3 : Noncoherent Detection Using Multiple Pulses. By allowing the model for the signal
.mplitude to be time varying, the decision rule can be expressed as the product of Np of the

lit-elihood ratios described in case 1 113]. This assumption enables independent maximization of
eA-ch Np likelihood function with respect to the unknown parameters. The GLR for this case is
stL Listically equivalent to the product of N, independent #-distributed r.v.'s. Section 3 will show
tha' the test is equivalent to a noncoherent integration process. Performance of this noncoherent
detector is expected to approach the matched filter performance level as K --- oc.

To evaluate noncoherent detector performance, the threshold value corresponding to a speci-

fied PFA must be determined. Fortunately, using the transformation of variable technique [6], the
product of independent central # r.v.'s with a special set of degrees-of-freedom parameters can be
transformed into a central X2 r.v. with Np degrees of freedom. The threshold value is obtained
using the incomplete gamma function (14].

The PD for this tesa. presents considerable difficulties. For Np > 2, it is virtually impos-
sible to obtain an exact expression for the distribution of the product of noncentral 3 r.v.'s. A
Chernoff bound for this distribution was obtained and provided an analytical means for evaluat-
ing performance. This approach is quite different from the approximate X2 techniques preferred by
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statisticians when analyzing Wilks' Lambda tests [15]. A Monte Carlo simulation was used to obtain
experimental results. As expected, the analysis revealed that noncoherent detector performance
improved as a function of Np and K.

Case 4: Coherent Detection Using Multiple Pulses. Unlike case 3, the model for the returned
signal amplitude is held constant over the observation interval. The GLR test, as per case 3, can be
maximized with respect to the N, unknown covariance matrices; however, the maximization of the
GLR with respect to b is almost impossible. This problem can be solved using an approximation.
The GLR is expressed in terms of a truncated power series expansion. The approximate GLR can
then be maximized with respect to b. After some manipulation, the final approximate GLR can
be expressed as the product of a term that is a function of the amplitude estimate and the GLR
obtained for case 3. This result is defined as a coherent decision rule because the estimate of b
incorporates data from the complete N, pulse observation interval. The statistical analysis of this
decision rule, however, remains daunting and analytical attempts were abandoned in favor of Monte
Carlo simulations.

Several conditions were examined via simulation. As a performance benchmark, the coherent
detector was tested in the less severe stationary noise environment. Given a reasonable number
of secondary vectors, detector performance exceeded that of the noncoherent, known covariance
detector. Under nonstationary conditions, the coherent detector also exceeded the performance of
the noncoherent detector. In fact, coherent detector performance decreased only when the number
of covariance estimates during an Np pulse observation interval was reduced. Among the noise
environments used for test purposes were the blinking Jammer and multiple jammer scenarios.

1.4 Report Outline

The remainder of this report is organized as follows: Section 2 presents the single-pulse
analysis based upon the GLR test. Because the multiple-pulse stationary case can be reduced
to the form of case 1, its analysis is incorporated here. Section 3 exple s the performance of the
noncoherent detector, including a complete derivation of the Chernoff bound. The coherent detector
that is based upon a series expansion is examined in Section 4. The final section summarizes the
results and conclusions for all cases (see 'fable 1).
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2. SINGLE-PULSE ADAPTIVE DETECTOR

In the course of deriving the GLR test, basic terminology is presented. The resulting test is
shown to be statistically equivalent to 1 plus a conditional F-distributed r.v. Using a relationship
between F and 3 r.v.'s, the inverse of the test statistic is shown to possess a conditional 3 distribu-
tion. Using the cumulative distribution function of the 0 distribution, exact expressions for the PD
and PFA are obtained, and the effect of covariance estimation on detector performance is discussed
[7].

2.1 Single-Pulse GLR Test

The analysis begins by defining the complex multivariate Gaussian pdf that characterizes the
primary and secondary data vectors. As stated in Section 1, the real and imaginary parts of each
element of the data vectors are independent. Under the signal plus noise hypothesis, the mean of
the primary data vector is bp; and under the noise-only hypothesis the mean vector is 0. The pdf
of the primary vector under H, is

pj(zjH1 ) - .N1M 1  1e (z-bp)"Mi (z-bp) (3)

where

M1 {E(7-bp)(z bp)H}

b is the complex returned signal amplitude, and p is the steering vector. Without loss of generality,
the steering vector is defined to have unit length.

The primary vector pdf under Ho is

po(zlHo) = ,IIMoI1e (4)

where

Mo = E{zzH}

The secondary vectors, z(k),k 1,... K, are also zero-mean and possess the same pdf as the
primary vector under Ho; MI and Mo are assumed unknown.
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From previous studies where covariance matrices are assumed unknown, detector performance
was shown to be directly related to the quality ot the covariance estimate 17,11]. Because the sample

covariance matrix is the estimator form obtained from the GLR test procedure, this estimate will
asymptotically approach the true value as the number of sample vectors used to form the estimate
increases. Therefore, the covariance matrix estimator should use the maximum number of available
samples.

The joint pdf of the primary and K secondary vectors forms the basis for the GLR procedure.
Because nearby range gates are assumed to share the same covariance matrix, K + 1 data vectors
possessing the same covariance are now available to form a decision rule. The primary and secondary
vectors are statistically independent; hence, the joint pdf of the primary vector and the K secondary
vectors is simply the product of the individual pdf's. The joint pdf is denoted as

pi {z, z(1),.. . , z(K)[H, i = 0, 1 (5)

Forming the ratio of the respective joint pdf's, the single-pulse likelihood ratio is

A p,{z,z(1),...,z(K)IHI} (6)
po{z,z(1),...,z(K)IHo} 

(

The numerator and denominator pdf's are referred to as the "likelihood functions."

Equation (6) is a function of the unknown parameters b, M1, and Mo. Because of the presence
of unknown parameters, the standard GLR test procedure is used to arrive at a decision rule. The
GLR expressed in terms of the multivariate Gaussian pdf is defined as:

.,up C1(+ 1 e+ I{(zbp)HMTI (Z bp)+Q}

A (MI ,Mo,b) fi, Mlb Z - 7
9j.p CK+' e-'zo1QjI 0

Mo

where

Ci = jrN 2I = 0, 1

and
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KEz- -. (k)Mo-z(k)
i=1

For mathematical simplicity, apply the inner product identity xHy-lx Tr{y-lXXH) to the
(K + 1)th root of Equation (7). Using this identity yields

sup 1e - M -{ bP)(Z bP)M+S}]

AMrb+u = Mie [WIoLx{ZZH +S1] (8)
sR p C O

where

K
-s = •z(k)ZH(k)

i=1

A is now redefined as the (K + 1)th root of the ratio.

The GLR test procedure requires that the MLEs of the unknown parametels under each
hypothesis be evaluated and then substituted into the test in place of the true parameter values.
The preceding expression is solved to obtain the MLEs of the unknown covariance matrix. The
MLEs are denoted as M1I and MO, respectively. From Equation (8), the MLEs of the covariance
matrix under each hypothesis are

1

vIl(b) 1 K '-' (z - bp)(z - bp)H + S •j(9)

and

1 {- -" + S }(10)Mo=K +----

As stated In Section 1, the sample covariance form found in Equations (9) and (10) arises from the
problem formulation, not from a priori assumption.

The MLE M1 is still a function of the unknown returned amplitude that must he subsequently
estimated. After substituting the MLEs of the covariance matrices into their respective likelihood
functions, the GLR reduces to the following ratio of determinants:
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A (b) = -- ---lM l (11)

mIilMi II
b

The process of minimizing the denominator is equivalent to maximizing the likelihood ratio. Using
the following determinant identities,

(K + 1)NIIMIII = SII[l + (z - bp)HS-I(z - bp)] (12)

and

(K + 1)NIjIMoI =lltS[[ + z'S'z] , (13)

and completing the square with respect to b, results in an expression where the unknown parameter
b is isolated. The GLR can be written as

A(b) = 1 .+ zHS _,z (14)
min J+zHS-IZ+PHS 1 P b-2pS-1pz 2_ "p ]

b

The denominator in Equation (14) is minimized when b = b, where b is

pHSdIZ (15)

The MLE b is identical in form to the minimum variance unbiased estimator of b given that 11K
S replaces M. The estimate is essentially produced by whitening and cross-correlating the data
vector with the steering vector. The substitution of b into the GLR yields

1 + zHS-Iz >
A "_ -_P HS-__zII <a (16)

p S- p

where a is a threshold parameter.

Before deriving the statistics of the GLR test, an attempt was made to develop an intuitive
feel for the behavior of the test. As found in Equation (16), the test is at a maximum when
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the denominator term takes on its minimum value. The conditions under the signal-plus-noise
hypothesis are examined. By setting the primary data vector z equal its expected value under HI,
bp, and performing some algebraic manipulation, the denominator reduces to the scalar value 1,
which is the minimum value of the denominator for any data vector z. If the target is present
and is collinear in space with the steering vector, the best chance of making the correct decision is
at hand. The numerator term under this assumption takes on the form 1 + IbI2pHS-1p. As the
sample covariance approaches the true covariance, Ibj2 PHS-1p becomes in the limit jbj2 pnM-1p,
which is the nonadaptive SNR of the array except for the factor 1/K. Therefore, as the covariance
estimate improves the SNR required to achieve a certain PD decreases.

Alternatively, the presence of the sample covariance in the decision rule results in the actual
SNR seen by the detector to be less than the optimal nonadaptive SNR. If the estimation loss factor
is defined to be the random variabje p, the performance of the test can be evaluated in terms of
the product of the nonadaptive SNR and the complex 3-distributed loss factor p. This loss factor
was derived in Reed, Mallett, and Brennan [11f, and its effect on the performance of the decision
rule was first studied In Kelly [7]. The loss factor plays a critical role in the performance of the
adaptive detector.

2.2 Statistical Representation of the Single-Pulse GLR Test

The analysis of the performance of the single-pulse GLR test is based upon several standard
multivariate statistical techniques [16-181. The primary and secondary data vectors are whitened
so that each of the components of the N-element data vectors are statistically independent. The
space spanned by the data vectors is then divided into two orthogonal subspaces of dimension 1 and
N - 1, respectively. A unitary transformation is then applied to the data vectors to rotate the mean
value of the data completely into the first element of the data vectors. By fixing the components of
the N - I element subspace, the conditional distribution of the single-element subspace is obtained.
After removing the conditioning effect through averaging, the unconditional distribution of the test
provides the basis for the PD and PFA expressions.

For clarity, the GLR test is restated:

A1 + zH/S-1z >

HSz Ips-zl2'< 
(17)

I + z -z _ P [-

and the analysis proceeds by whitening the data vectors. An appropriate choice for a whitening
transformation is the inverse of the square root of the covariance matrix. Because the covariance
matrix (and its inverse) is positive definite, a positive definite square root matrix M-1/ 2 can be
introduced. By defining the whitened primary vector vector as i = M-'/' z, then E2 / -

E { (M-1/2 i) (M-1/2 )H} = I. Thus the choice of M-1 /2 as a transformation matrix results in
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a statistically independent data set. Likewise, a similar definition of the whitened secondary vector
i(k) yields the same result. The steering vector is also whitened to obtain f3 = M-'/ 2 p.

A unitary transformation UR is defined such that the whitened steering vector f) = M-" 2p
is transformed into a basis vector with 1 as the first coordinate and 0 as the remaining N - 1
elements. This rotation can be accomplished by selecting the first row of UR to be a normalized
unit vector and the other rows of UR to be orthogonal to the first row and to each other, i.e., uNu3
= 6,j, where 6ij is the Kronecker delta function. The whitened, rotated steering vector is defined
as

e=--URP=1 0 ... 01 H (18)

The test statistic is unchanged by a unitary trrnsforrnation because it does not change a
vector norm. The premultiplication of i and i(k) by UR affects only the mean of i. To simplify
notation, the whitened, rotated primary and secondary data vectors are redefined in terms of the
original notation as the vectors z and z(k), respectively. The GLR in terms of the whitened, rotated
vectors is

A - 1 + +H S-lz
A~ z -- S , (19)

1eHS-1ze

where now

S = UR S URH

and

E{z) =bUR M-1 / 2 p

The data vectors are partitioned into an A component that corresponds to the first element
and a B component that corresponds to the remaining N - 1 elements. The partitioned primary
and secondary vectors are

Z• = ZAZB]T = u i , (20)

where ZA is a scalar, zB is a 1 x (N - 1) vector, and

z(k) = [ZA(k) ?B(k)JT = UR t(k)
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The choice of the transformed steering vector p results in this particular partitioning. The
whitened, rotated S matrix, which is K times the sample covariance matrix based on the secondaries
alone, is partitioned as

S IA A (21)
SBA SBE J

where

K

SAA = Z ZA(k)ZA1 (k)

K

SAB = E ZA(k)ZBH(k)

K

SBA = ZB(k)ZAH(k)

K

SBB = zB(k)ZBH(k)

The inverse of the sample covariance matrix is defined as P and is partitioned in a manner analogous
to that used for the matrix S, i.e.,

p [PAA PAB 1 (22)

PBA PBj

The three inner product terms of the GLR test are now expressed in terms of the preceding
definitions. First,

z 1 S-1 z -= zHPz" (23)

(A + PPABZB) H PAA (ZA + Al PAIBzE)-'AB n ZB p/•

+ =Z (PBB - PBAPA•PB)zB

Second,
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eHS-le=eHPe=PA , (24)

And third, the final inner product

e H S -Iz = e1 1Pz = PAA (ZA + PAJ1PABZB) (25)

Using the Schur relations for partitioned matrices, the inner product zHS-'z is redefined:

zF.HS-lz - ZhS-B1z + -- (26)

where

Y ZA--SABS•BZB

and

T =SAA - SABSBSBA = P;A

It is interesting to note that terms y and b can be shown to be identical using Equations (26)
and (27).

To digress slightly, the discussion turns to the significance of the r.v.'s y and T. Suppose
that a Gaussian-distributed N-vector g has a mean A and covariance matrix E. The vector g is
partitioned into q and N - q dimensional subvectors and the covariance matrix E is partitioned in
the same way as S. A linear transformation to the new components hl and h2, which results in h,
being uncorrelated with h 2 is

hi = g, - E12E-1g2 (27)

and

h2 = g2 , (28)

where E is partitioned as

E 21 E 22
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The product E12 £2I' is referred to as the "regression coefficient" in the statistical literature

[16]. From a filtering or estimation theory viewpoint, hi is the prediction error given h 2.

The conditional distribution p (h, I h2) is Gaussian-distributed with mean P, - El22-2" P2

and covarlance El I - E 12E2-21•21 Observing that the form of y Is identical to that of h1, the r.v.
y is simply the prediction error of ZA given ZB. The conditional covariance is not a function of
h2 ; therefore, Ell - £12 E2_21 £21 is the unconditional covariance of hl. Because T is identical
in structure to the unconditional covariance of yj, T is clearly independent of y. The preceding
discussion can be used to gain valuable insight into the final form of the decision rule.

The remaining inner products expressed in terms of the r.v.'s V and T are

1 (29)
eHS-le = eHPe =1

and

eHS-lz =eHPz = T (30)

The GLR expressed in terms of the Schur components is

1 + zHS-lz (31)H-I (1
-+ZBSBBB

Equation (31) is now used along with the definitions of y and T to obtain the final form of
the GLR. The r.v. v is defined as

V Y P 1/2/ (32)

where the loss factor p is defined as

1

The GLR test for the single-pulse case expressed in terms of v and T is

A = 1 + < a (34)
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Equation (32) is the form of the decision rule used to obtain test performance criteria, i.e.,
PD and PFA.

The statistical Characterization of the previous test is now examined. In general terms, given
a vector x of length N distributed as N(p, E) and a sample covariance matrix S composed of K
zero-mean terms, the quadratic inner product xHSIx is distributed as noncentral F with N and
K - N + 1 complex degrees of freedom (dof) and HEH-lg noncentrality parameter [16]. This
definition of the complex Gaussian r.v. accounts for the correspondence of one complex to two
real dof; therefore, the pdf for a real r.v. with an even number of dof is equivalent to the pdf
of complex r.v. with one-half the number of dof. Fbr distributions based upon the multivariate
Gaussian distribution, the noncentrality parameter is the squared norm of the mean vector. If x is
zero-mean, the resulting distribution is central F with the same dof. The noncentrality parameterH -!
is, of course, 0 for central distributions. Therefore, zB SBB zB, the denominator of p, is distributed
as central F with N - 1 and K - N + 2 complex dof. An important - lationship between F and 3
r.v.'s is

1
x'S(n; m) = (35)

1 + xF(m; n)

where m and n are the dof parameters; therefore, the loss factor p is distributed as central 3 with
K - N +2 and N - 1 dof.

Because v is a conditional Gaussian r.v., the likelihood ratio term Iv12 is X2-distributed con-
ditioned on the /-distributed loss factor p. Because v is composed of only a single term, it has
just one complex dof. In terms of the original coordinates, the mean vector of z is bM-1 /2p. The
squared norm of this vector is (bM-l/2p)H(bM-l/ 2p) = IbI2pHM- 1 p, which is simply the non-
adaptive SNR. Under conditioning, the B components are held constant and the conditional mean
of v is the product bM- 1/2ppl/ 2. The resulting noncentrality parameter under conditioning is the
product of the nonadaptive SNR and the loss factor p. The loss factor enters the test statistic only
through the conditional mean.

The r.v. T, which equals SAA - SABS-B'BSBA, is distributed as central X2 with K - N + 1
dof [5]. The distribution of T can be obtained using the properties of Wishart matrices and certain
orthogonal transformations. T is not a function of the primary vector subcomponents, hence it is
statistically independent of y and v.

The ratio Jv1 2/T is composed of two independent X2 r.v.'s. Because the ratio of independent

X2 r.v.'s is defined to be F-distributed, the term Iv12 /T is conditionally F-distributed with 1 and
K -- N + 1 dof. Using the relationship expressed in Equation (35), A is statistically equivalent

3Derivations are for real r.v.'s but can be extended to the complex r.v. case.

20



to the inverse of a conditional 3-distributed random variable. The test statistic is now examined
under hypotheses HI and Ho.

2.3 Single-Pulse PFA and PD

To obtain expressions for the PD and PFA, the conditional and unconditional distributions of
the test statistic are examined first. As stated in Section 2.2, the inverse test statistic is complex
,3.distributed. The conditional distribution of the inverse test statistic A-' is

p(xlp) = f(,z; L, 1; c) (36)

where

L=K-N+I

c = ap = (jbI2pHMp) p under H ,

and

c=0 under HO

The presence of the conditioning r.v. requires that the distribution of the test statistic, which
is conditionally O-distributed, is averaged over p to obtain the unconditional distribution of the
test. Under Ho the noncentrality parameter is 0; therefore, the conditioning r.v. has no effect on
the unconditional distribution because It appears only through the noncentrality parameter. As a
result, the inverse test distribution is unconditionally central 0-distributed under Ho.

Because Its form is much simpler, the distribution of the test under Ho is examined first. The
analysis results in an exact expression for the PFA. The general form of the central /3 distribution
is [5]

f (x;m, n) = r(n + m) (, - X)n- (37)rcn)r(,m)

where n and m are the complex dof parameters.

In the current case where the first dof parameter is L and the second is 1, the central /3
distribution reduces to the simple form

f,6(T; L, 1) = Lx-1 (38)

21



The PFA is defined as:

PF =L f(AlHo)dA (39)

Using the relationship

Pr(Ara)=Pr(A-1_<1) , (40)

and the fact that A-l is unconditionally distributed as f0(x; L, 1), PFA is the cumulative distribution
function of a central 6 r.v., i.e.,

PFA = -- Lxf--1 dx 1 (41)

Because PFA is independent of the true covariance matrix and is only a function of the dimensional
parameters of the problem, the test statistic possesses the desirable constant false alarm rate
(CFAR) characteristic. The threshold value a is evaluated solving Equation (41) for a specific PFA
value.

Under the signal-plus-noise hypothesis, the presence of the conditioning r.v. results in a more
complicated analysis. The unconditional distribution of the test statistic, which is obtained by
averaging out over the distribution of the loss factor (contained in c), is

I'
f(xlHl) =j f(x; L, 1; c) f6 (p; L + 1, N - 1) dp (42)

Per the PFA calculation, the PD can be expressed in terms of the unconditional test di itribu-
tion as

PD = Pr(A 2! a) = jo f(xlHl)dx (43)

Using previously derived results [8], PD is

PD = 1 -- --f 1 Lk _a 1)ik (a (44)

where a is the nonadaptive SNR,
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Hk(w)= Gk(ap) fo (p;L+ 1,N - 1) dp

and

k-1 X r
Gk=X e-' E]m-T

A complete discussion of the computational complexities involved in the evaluation of the proba-
bility of detection can be found elsewhere [19,20].

As discussed in greater detail in the remainder of the report, the formulation of the GLR
test is equivalent to the Wilks' A test, which commonly occurs in multivariate hypothesis testing
schemes [10]. Results obtained for the signal-plus-noise hypothesis differ from the standard results
because of the presence of the conditioning r.v. Next is an examination of the performance of the
decision rule as a function of the nonadaptive SNR and the excess number of secondary vectors L.

2.4 Performance of the Single-Pulse Detector

The statistical performance of the single-pulse decision rule is quantified through the use of
receiver operating characteristic (ROC) plots. ROC is defined here as the plot of the PD versus
SNR for a fixed PFA, which is set to a nominal value of 10-2. The parameter L, which is related
to the number of secondary vectors, is a controlling factor in the performance of the decision rule.
As L tends to oo, the loss factor tends to 1, hence, the covariance estimate approaches the true
covariance. When there is no estimation loss, the Marcum-Q function can be used to evaluate PD.

To illustrate, let the dimensional parameter N = 4. Figure 1 shows the performance of the
single-pulse detector as a function of K. As K increases from 8 to 20, ROC approaches the known
covariance case. Kelly has shown that ROC is only a functiors of L. For example, the case where
N = 16, K = 32, and L = 17 yields the same results as the preceding case with N = 4 and K = 20.

2.5 Multiple-Pulse Test in a Stationary Noise Environment (Case 2)

The true covariance matrix is assumed to be constant over the N. pulse observation intervals
as does the mean value of the primary data vector. Analysis begins by forming an N x Np data
block ZN where

ZN = [ZIZ2...ZN,1 . (45)

The columns of ZN are the primary data vectors zi, i = 1,... ,
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An Np x Np unitary matrix UN, can be appropriately selected to rotate the mean of the data
solely into the first column of ZN. This operation is possible because all the mean vectors are the
same. Performing the postmultiplication of ZN by UH, results in

ZN UH$, = [Z. ZbJ (46)

where Z. is a column vector with mean bp and Zb is an N x (Np - 1) zero-mean array.

The problem has now been reduced to the case 1 form with a single primary vector with a
mean of b p and K + Np - 1 secondary vectors. Test performance can be evaluated using the PFA
and PD equations developed In Section 2.5.

2.6 Summary of Results

For the single-pulse case, the decision rule derived from a GLR test has been statistically
characterized under both hypotheses. Under hypothesis Ho, the PpA is solely a function of the
excess number of secondaries; therefore, the test is a CFAR test. The expression for the PD
is complicated and requires considerable computation time. The ROC plots indicate that test
performance approaches the matched filter levels as the the number of secondary data vectors used
In the test increases.
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3. NONCOHERENT ADAPTIVE DETECTION

This section examines the more difficul nf, ,, tationary multiple-observation case. Due to the
nonstationarity assumption, the covariance mt" %% ,an vary over the complete observation interval.
The true covariance matrix at each time instant is assumed unknown under both hypotheses and,
for this case only, the model for the returned signal amplitude is time varying. A GLR test
using data from N, data observation periods is then formulated under these assumptions. The
resulting decision rule is shown to be equivalent to a noncoherent detection process. The resulting
test consists of the inverse product of Np 3-distributed r.v.'s and is independent of the unknown
covariance parameters, implying that it possesses the desirable CFAR property [7]. An exact
expression for the PFA is obtained and an upper bound on the PD is derived [13]. Theoretical and
simulation results are compared and observations with respect to performance are made.

3.1 Multiple-Pulse GLR Test

This section formulates the GLR test for the multiple-observation case, where the covariance
matrix and the returned signal amplitude are unknown parameters. To restate, the pdf of the
primary vector for the ith pulse under H, is

pi(zjjHi) = I 1  e_(zjbjp)H Mj-l(zjb4p) (47)it",' 11M ,',1 11 47

where

Mu = E { (z, - bp)(z, - bjp)H}

bi is the complex returned signal amplitude, and p is the steering vector. The primary vector pdf
under Ho is

e- = 1 Z o (48)

where

Moj = EzjzH

The secondary vectors are defined to be zero-mean and possess the same pdf as that of the primary
vector under Ho.
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As per the single-pulse case, the joint pdf of the primary and secondary vectors are formed
at time instant i. Both likelihood functions are the product of K + 1 multivariate Gaussian pdf's.
Assuming the covariance matrices are totally unknown under both hypotheses, and the returned
signal amplitudes are unknown parameters only under HI, the likelihood ratio is

N, NV pl(zi,zi(l),... ,z,(K);M ij,b,)
A -- I' Ai = 1" p- z, -. ziK)Mo) (49)

flA1 = lpo(z,,z,(1),..,(Kvo)
t=1i

where

x= (z, - b, p)

and

K

According to the GLR test procedure, the numerator of Equation (49) must be maximized
with respect to each M1 j and bi. The denominator is maximized solely with respect to each M0o.
Taking the (K + 1)th root of the numerator and denominator pdf's for each Ai and applying the
inner product identity xHy-Ix Tr{Y-IxxH}, the likelihood ratio at i is

Ai =~ (i~it) e- -Ii 1 xx'S} (50)
1 e- TM' O r.zis

where

K
Si z=(k) z(k)

•=1

Aj is redefined as the (K + 1)th root of the test at i.
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From Equation (50), while fixing bi temporarily, the MLEs of the covariance under each
hypothesis are

l = K--" {(z - bip)(z, - bp)H+ S,} (51)

and

MO,1= izf + Si} (52)

Again, the sample covariance matrix estimator form arises from the current problem formu-
lation, not from an a priori assumption. After substituting the MLEs of the covariance matrix for
each pulse interval into their respective likelihood functions, the following ratio of determinants,
which still contains the unknown parameter bi, is obtained:

-"I(53)

Equation (53) is maximized with respect to bi by minimizing the denominator, i.e.,

N, ig01
A .-fl -. (54)

bi

Using the same determinant identities found in Section 2.1,

(K + 1)NII" 4Ijl =- IlSi[11 + (zi - bpH)HS7'(Zi - bip)] (55)

and

(K + 1)NIIgvo II = IISd111 + zST1 iSz , (56)

and completing the square with respect to the b1, an expression for the GLR, where the unknown
parameters bi, i = 1,..., Np are isolated, is obtained:
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A = rJ1 U-Z (57)

b,

Equation (57) is maximized when bi = bi, i = 1,..., Np, as was the case in the single-pulse analysis.
From the previous equation, the MLE for b. is

PH1S71lZt
bpH Si Ip (58)

The estimator bi possesses a form equivalent to the prediction error (see Section 2.2). Substituting
bi in place of bi yields the final form of the LRT:

N, N, 1 + zyS- zi >
A = rJ Ai =l- pHS1 'z, 2 <a (59)

t 1 t 1 + -1i ZiH -

where a is a threshold parameter. The above expression is just the product of NA single-pulse tests.

The GJR test is solely a function of the primary vectors, the secondary vectors, and the known
vector p. Taking the logarithm of the GLR, a summation of Np independent Ai terms is obtained.
Because the data at each time instant are used to make decisions, the overall detection process is
equivalent to noncoherent integration. An examination of LRT statistics given by Equation (59)
follows.

3.2 Analysis of the Noncoherent GLR Test

This section examines the test statistic A under each hypothesis. The inverse test statistic
under hypothesis Ho possesses a central X2 distribution. The cumulative distribution function of
the inverse test statistic, PFA, is evaluated in terms of a closed-form expression. Under hypothesis
H1 , an exact expression for the pdf of the inverse product of Np independent noncentral 0 r.v.'s
is unobtainable. Hence, PD cannot be expressed in closed-form and an upper (Chernoff) bound is
obtained.

The equivalence between the problem studied here and the well-known Wilks' A test [10] is
discussed next. The general form of the Wilks' A test arises when the covarlance matrix is unknown
and the subsequent GLR procedure results n the ratio of determinants. Through the judicious use
of several identities found in multivariate statistics and probability theory, the moments of the test
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can be shown to be equa! to the moment of the product of independent f3-distributed r.v.'s (for
real and complex r.v.'s, see Anderson (16] and Box [21], and Kelly and Forsythe [5], respectively).
When the product consists of greater than three elements, however, an exact expression for the pdf
is virtually impossible to obtain. Adding to the complexity of this problem is the presence of the
loss factor p, which necessitates working with conditional distributions.

Many statistical researchers have examined the unconditional Wilks' A test. Several asymp-
totic approaches based on the X2 distribution have been developed, but these methods often require
using a correction factor [15,22]. These approximations produce reliable results only when N, is
relatively small. Because this analysis may be extended to cases where the pulse train can be quite
long, the X2 approaches do not appear to be useful in the current context. In terms of notation,
the statistical community defines the likelihood ratio piHo/piHj, which is the inverse of the defi-
nition commonly used by communications engineers: piHj/piHo. The difference arises from what
each group is testing. The goal of the communications engineer is to find differences between two
hypotheses given the data, whereas the goal of the statistician is to determine whether the data fit
a specified model. The test definition in this report results ini the inverse product of independent
Sr.v.'s.

A single term of the GLR test, A1, given in Equation (59), was shown in Section 2 to be
statistically equivalent to 1 plus the ratio of two independent X2 r.v.'s, IVI2,/T. Under hypothesis
H1, IV,12 possesses a complex noncentral X2 distribution with 1 complex dof and a noncentrality
parameter q = ajpi, and is simply a complex central X2 r.v. under HO. The noncentrality parameter
ci is the product of the nonadaptive SNR aG and a )3-distributed loss factor pi. Hence, under H1,
Iv,12 is a complex noncentral X2 r.v. that is conditioned on pi. The parameter T. is an unconditional
complex central X2 r.v. with L complex dof. In terms of these X2 parameters, the GLR test for the
problem under study is

Np Np v1A = ,A h1 < (60)
imI i=ml

The complex central X2 pdf is defined:

f2(; )= 1 xi 1_|e_- (61)fx2(x,;mf) •-,(61

where m is the dof parameter and the noncentral X2 pdf is

fX2(X,; m; ci) = e-' 4-c (-.) 'Ira_,(2V'~~ ) , (62)

where c, = aip, is the nonceutrality parameter and In-1 is the modified Bessel function.

29



Because the ratio of the two independent X2 r.v.'s possesses an F distribution, the term Iv,12/T,
is conditionally F-distributed. Using the previously defined relationship between 0 and F r.v.'s,
the multiple-pulse GLR can be expressed as the inverse product of # r.v.'s that are conditioned on
the lass factor pi.

Under the null hypothesis, the general form of the complex Wilks' A test can be expressed as

Np X'6(m + n ,) < a (63)

The GLR test in the noise-only case is a special form of the Wilks' A test in that the inverse of
each Ai possesses the same 8 distribution, i.e., the current test is of the form

Np 1 >

H) < a (64)

The conditioning effect and the constant dof parameters are cases not found in the general statistical
literature. The distribution of the GLR under each hypothesis is now examined.

3.2.1 The PFA of the GLR Test

PFA is defined f.' p(A)IHo dA. The numerator term v, is assumed to be zero-mean (therefore,
the noncentrality parameter ci = 0), which leads to the result that the distribution of the test is
a function of central r.v.'s. For the dof specified in this problem, the GLR test statistic under
hypothesis Ho in terms of the product of central 1 r.v.'s is

Np N, 1
NPfl N1 =fl 1 (65)A = Hi Ai = 11 XO(L, 1) (

Using the definition of the complex 0 pdf, the pdf for each Ai reduces to

fo(x; L, 1) = L.L- 1 (66)

By allowing the returned amplitude to be time varying, the single-pulse case results have been used
to this point; however, the distribution of the inverse product of N, r.v.'s must be determined.

In general, the distribution of the product of r.v.'s is extremely difficult to evaluate analyt-
ically. If a transformation can be performed so that the test consists of the sum of independent
r.v.'s, several probability identities can then be applied to obtain the desired pdf 16]. Letting
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Ai = exp() (67)

and performing the standard change of variable transformation proccex..e, the pdf of the newly
defined r.v. V, is

f (yi) = e-I' (68)

Hence, the term Vi is a central X2 r.v. with one complex dof. The test can now be expressed as

A -- A i --exp f ,yi/L -eY/L , (69)

where

JVP
Y = y

i• I

Taking the logarithm of Equation (69), the resulting test consists of the sum of independent X2

r.v.'s; therefore, Y is central X2-distributed with Np dof. The pdf of Y is defined:

.f(Y) -=- f2(Y; NN- 1- yNp-I--Y (70)
r(Np)

The cumulative distribution function (cdf) of a X2 r.v. with N., dof is

F(Y) = I - GN, (Y) , (7,)

where

!y0 Np-I yk

GN,(Y) fx- (x;NP Np)dx = e-
k=0

This expression is the incomplete Gamma function, and the PFA of the test can be expressed as

PFA = GNP(Yo) , (72)
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where

YO = Lloga

The threshold that yields a particular PFA value can be found by solving Equation (72) by means
of a Newton-Raphson iteration procedure. The required derivative is given by

G' x=-II(Y; Np) (73)

An exact expression for the PFA, i.e., the error under hypothesis HO, has been obtained.
The PFA, corresponding to a pulse train of arbitrary length is easily evaluated using the previous
expressions. To complete the analysis, the test statistic under H, is now examined.

3.2.2 A Chernoff Bound for the PD of the GLR Test

PD is defined f.' p(A)IHI dA. Using the same notation as in the Section 3.2.1, the GLR test
is composed of the inverse product of Np noncentral 3 r.v.'s. The pdf of a single noncentral '3 r.v.
with L and 1 complex dof and noncentrality parameter cj is [5]

f•(xi;L,1;ci) = L r(- 1) e f(xi L, 1 + k) (74)

Unfortunately, no simple transformation can be performed to enable the product of terms to be
expressed in the preferable sum-of-terms form as was done in Section 3.2.1. As a result, the problem
inust be approached In a different way.

Statisticians have used asymptotic X2 approaches to obtain approximate solutions; however,
many of these approaches have drawbacks, Including the use of correction factors. This study
chooses to obtain the Chernoff bound for the distribution of the LRT [23]. Although not exact, this
upper bound will at least provide a measure of confidence in results obtained through simulations.
The remainder of this section is devoted to obtaining an optimal (tightest) upper bound on the
PD for the inverse product of Np independent, noncentral '3 r.v.'s. The derivation leading to the
Chernoff bound involves several probability and integral identities [5,9].

Because the noncentrality parameter of each r.v. Is conditioned on a P3-distributed loss factor,
the unconditional distribution of the test statistic must be obtained. The GLR under H1, expressed
as the inverse product of conditional noncentral 03 r.v.'s, is

N p N , 1

A = HA, =HXO(L, 1;c)(75)
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The pdf and the moments of an r.v. that are composed of the sum of independent r.v.'s can
be determined using moment generating function (MGF) properties. To take advantage of these
properties, the following change of variable is made:

Ai = e-", (76)

The GLR test can now be expressed as

Np N, N
A = A-' -1 e= exp <u a (77)

i=1 i=I

Taking the logarithm of Equation (77) and defining U = logA, the log GLR test is

Np

U= , Z loga (78)

Equation (76) has the form that enables using MGF properties.

Basing the remaining statistical analysis on the r.v. U, an upper bound on Pr(U > logo is
determined. Setting 6 = loga, the Chernoff bound in terms of U is defined:

Pr(U > 6) _< e-6E[ef'U] (79)

The optimization parameter P that yields the tightest possible upper bound is the solution of

dE~ev(U6)1 =0 (80)

To obtain the optimal upper bound for this problem, the term E[e't], which is the MGF of the
test statistic, and the parameter P need to be evaluated.

The Chernoff bound can obviously be expressed in terms of MGF, based on its definition. The
r.v. U is the sum of independent r.v.'s; therefore, using the MGF summation-product relationship,
the MGF of U is the product of the MGFs of each individual u%:

NP N,

Mu (v) = -I Mt(v) = fi E[e't'] (81)
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Citing the definition of the r.v. uj, Eje`"] is equal to E[AjL-]. The MGF of uj is clearly equivalent
to the -vth moment of a noncentral 03 r.v.

The -vth moment of the r.v. A is obtained by taking the expected value of -vth power of
A1. The pdf of a noncentral complex /i r.v. with L and 1 complex dof is repeated for clarity:

L(L F(L+I- ) - . .

fo(x,;L, 1;ci) = • (L) r(L +ik) +e f,(x,;L, I +k) (82)

Given the pdf of A1, the -uth conditional moment of this r.v. is

S[ l),, L (L) Lr (L- v (83)

x e-r'Fi(1+k;L-v+1+k;cj)

The :mconditional moment of Ai is now obtained. Conditioning is removed by averaging
over the distiibu';iot of the loss factor. First set c, = aipi, then multiply Equation (83) by
fo(p,; L + 1, A' - 1.), and finally integrate over the range of pi. The resulting expression for the
-vth unconditional moment of A1 is

[(L- =r(L-v) [(L+N) r (Llk) (

× c'r(1+k+j)r(Llk+j) r(LNk)r(Llk-v)
j r- (I + k) r (glk) r (LNk + j) r (Llk - v + j

x e-&'aF(N-L;LNk+j;ai)2. ,

where Llk= L+1 +kand LNk= L+N+k.

The function IF 1(N - 1; L + N + k +-j; ai) is the confluent hypergeometric function. It will
converge to a finite value because the second parameter is greater than the first (the dencminator
gamma function values will grow faster than those of the numerator) [24]. The summation over the
index j, which is of a form similar to a 2F2 hypergeometric series, will also converge for the same
reason given earlier.

A compact expression for the MGF of U is

MU (V)= E [A3] .(85)
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Assuming that the nonadaptive SNR is constant over the observation interval (remember that only
the model for the returned amplitude is time varying, not the actual returned amplitude), the MGF
of U reduces to

= (E [Ai (86)

Equations (84-86) are used for the computer-based evaluation of Mu(v). The final form of the
expression for the Chernoff bound requires that the optimization parameter i, be found numerically.
Computational difficulties encountered in obtaining the Chernoff bound in Section 3.3.

3.3 Simulhlion Results

This section discusses a comparative analysis that is performed using results obtained from
Monte Carlo simulations, the Chernoff bound, and the benchmark matched filter case where the
covariance matrix is assumed known. How the Chernoff bounds were obtained numerically Is
described first, followed by a discussion of the Monte Carlo simulation technique used for this
investigation. Detector performance is then analyzed using ROC plots. For the purposes of this
report, ROCs are defined as plots of PD versus SNR for a fixed PFA. The ROC for the known
covariance case is produced using a modified Marcum-Q function [25].

The numerical evaluation of the Chernoff bound involves an expression that includes two
infinite series. The 1F1 (N- 1; L+N+k+j;ai) confluent hypergeometric series is well behaved and
converges rapidly. The summation on i was truncated after the difference between two successive
terms was <: 10-4. The summation on j , however, is not quite that simple. This summation is
similar in form to a 2F2 hypergeometric series [24] that monotonically increases to a peak value and
then decreases until the summation reaches a steady-state; therefore, truncation bounds were not
applied until after the maximum functional value had been reached. It was necessary to evaluate
the logarithms of the terms in the Chernoff bound expression to avoid overflow. Also, recursive
relationships were used to decrease the computation time. For each SNR value, the optimization
parameter il was evaluated using a numerical search method with v restricted to the range 0 <S v < L
due to the definition of the r function. The Chernoff bound was then computed for this particular
value of v and stored for plotting purposes.

A simple Monte Carlo approach was chosen to evaluate PD. For the noncoherent decision
rule, it was necessary to generate Np noncentral 8 r.v.'s, form their inverse product, and compare
it to a threshold. If the product was greater than the threshold (corresponding to a target present
in the data), a counter was incremented by one.

A PPA of 0.01 was selected and the corresponding threshold was easily computed using the
incomplete gamma function. This relatively high (for radar applications) PFA value was chosen to
minimize the number of simulation runs. If the decision rule is used in conjunction with an M out
of N detector, PFA will be greatly reduced [26]. If one wanted to work with PFA on the order of
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10-6, importance sampling or extreme value theory techniques could be applied to the problem
under investigation [27-301. Given the value of the current PFA, at least 1,000 data sequences of
Np length were required for the simulation results to be statistically significant. The final counter
value was divided by 1,000 with the resulting value defined as the simulation-generated PD. This
process was repeated for each SNR.

The generation of r.v.'s possessing the desired noncentral /3 distribution is now presented. A
noncentral 03 r.v. is a function of the noncentrality parameter (c = SNR p) and the dimensional
parameters of the problem, L and N. The nonadaptive SNR was chosen to range between 0 and
20 dB in 1-dB increments for simulation purposes. The loss factor p, was set to its mean value,
E(p1 ) = (L + l)/(L + N). Because p, is a/3-distributed r.v. and its distribution is sharply peaked
about the mean for the given dof parameters. the use of the mean value in place of the r.v. is
justified.

For each value of the noncentrality parameter, the random variates were generated using
a stratified rejection mchod [14,31]. The rejection (also referred to as "acceptance-rejection")
method was selected because the noncentral /3 probability distribution is not amenable to direct
inversion. Direct inversion requires solving X = F-(U), where F(x) is the cumulative distribution
function of the r.v. X, and U is uniformly distributed between 0 and 1. An examination of the
noncentral / probability distribution indicates that F-1 (U) would be difficult to obtain for this
distribution; however, the rejection method can be used with any pdf. The stratification process
significantly reduces the number of attempts required to generate the desired quantity of r.v 's. The
resulting computational savings is important considering the number of variates that were required
for this study.

Analysis of detector performance capabilities proceeds by examining the ROCs for various
parameter combinations. Figure 2 illustrates a typical relationship between the Chernoff bound,
the Marcum-Q function, and the Monte Carlo simulation results.

Although it is somewhat loose (4 dB greater than the simulation results), the Chernoff bound
provides some level of confidence in the Monte Carlo simulation results. In all cases examined,
the bound is greater than the simulation result but tracks the shape of both the Marcum-Q and
simulation curves. Notice that the simulation result is only 1 dB less than the optimal detector
over the complete SNR range. The GLR-based detector with N = 4 and K = 20 performs well
under these conditions.

The effect of the excess number of secondaries, L = K - N + 1, is now examined. Figure 3
portrays the asymptotic behavior of the detector as a function of K with number of array elements
N fixed. As the number of secondary vectors K increases, detector performance clearly approaches
the known covariance case, depicted as the Marcum-Q curve, with the loss compared to the optimal
detector being significantly reduced. The detector provides excellent performance given a reasonable
number of secondary data vectors. The improved performance as function of increasing K occurs
for all pulse train lengths.
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Figure 3. Noncoherent performance as a function of K for Np = 2.
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Figures 4 and 5 portray the same information as Figure 2 but with Np = 4 and 10, respectively.
The parameter L has the same value (K = 20, therefore, L = 17) as used for Figure 1 to make
valid comparisons. The Chernoff bound tracks the Marcum-Q and simulation results in both cases.
For both Np = 4 and 10, the detection loss compared to the matched filter is the samne 1-dB loss
found in Figure 2.
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Figure 4. Noncoherent performance comparison for Np = 4.

Figure 6 illustrates detector performance as a function of Np. Notice the pronounced leftward
shift of the ROC curves as a function of increasing Np. The SNR required to achieve a certain PD
is significantly decreased as the pulse train is increased in length. These results are not unexpected
because more information is being used to make the decision with a longer pulse train.

To further examine the effect of increasing N., the SNR required to achieve a PD = 0.9 versus
Np for N = 4 and K = 20 is shown in Figure 7. The required SNR for a fixed PD value decreases
at a rate proportional to 1/%/7, which is consistent with the behavior of noncoherent detectors.
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It is evident that the two parameters that control detector performance are the pulse train
length Np and the number. of excess secondary vectors L. The array size N is now increased
to evaluate its effect. The results ilustrated in Figure 8 were produced under the conditions
N = 16, K = 32, i.e., L =17 and Np = 2. The curves are essentially identical in form to the results
portrayed in Figure 2 but with L = 17 and Np = 2. Again, as L was increased, the performance
approached that of the matched filter in the limit.

The results obtained clearly follow the patterns established for the single-pulse case examined
in Kelly [7]. As the number of excess secondaries is increased, a marked improvement occurs
in performance. In addition, the detector possesses the desirable CFAR characteristic in that it is
statistically independent of the true covariance and is only a function of the dimensional parameters
N and K. Given that the data can be processed from a large number of secondaries and a long pulse
train, a detector that approaches the matched filter performance, even under low SNR conditions,
has been developed.

3.4 Summary of Results

A noncoherent detector that is statistically identical to a special form of the Willcs' A test
hais been presented. The detector, the output of which is the inverse product of Np complex i3-
distributed r.v.'s, has been analyzed under both the signal-plub-noise and noise-only hypotheses.
Under hypothesis Ho, the detector is statistically equivalent to a central X2 r.v. with Np dof.
Under hypothesis H11, an exact expression for the pdf of the LRT cannot be obtained, and a
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Chernoff bound on the PD was derived. The Chernoff bound enabled some degree of confidence
in the results obtained through Monte Carlo simulation rans. The detector was shown to provide
excellent performance given that the number of excess secondaries is greater than at least 5N.
As the number of pulses is increased, detector performance improves as expected and less SNR is
needed to achieve a certain PD level. The use of additional signal-free data vectors was shown to
provide a marked performance improvement in a detector derived from a GLR test formulation.
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4. COHERENT ADAPTIVE DETECTION

An approximate solution for the coherent detection problem is developed in this section.
Assuming a constant model for the returned amplitude, the maximization of the likelihood ratio is
mathematically unmanageable. As a result, an approximation using a truncated series expansion of
the GLR forms the basis for the coherent decision rule; however, the exact statistics of the coherent
decision rule cannot be obtained. Both the threshold value corresponding to a specified PFA and the
ROC are evaluated using Monte Carlo simulations. Under most conditions, the coherent detector
outperforms the noncoherent known covariance case as well as the noncoherent unknown covariance
detector presented in Section 3.

4.1 An Approximate Multiple-Pulse Decision Rule

In Section 3, the model for the returned signal amplitude was allowed to vary as a function of
time. Although it does not match actual conditions over short time intervals, this model enabled
the maximization of the GLR with respect to the returned amplitude to be mathematically man-
ageable. Noncoherent detector performance, however, cannot exceed the known covariance case,
the performance of which is evaluated using the Marcum-Q function. The goal is to develop a
detector that uses the complete Np pulse observation interval to obtain the MLE (or a reasonable
approximation) of the returned amplitude. An estimator of this form enables a coherent decision
rule to be obtained an end result.

Following the , analysis used in the formation of the noncoherent GLR, the Np -pulse
likelihood ratio is formW:

Np NP p(
A = ji A , pi, z1(1), • • •, z,(K); M1 ,, b) (87)

i, po(z=,z-(1),., ,z,(K)Ml)(8

where the returned amplitude b is a constant.

The likelihood functions in Equation (87) are first maximized with respect to the unknown
covariances. After taking the (K + 1)th root of the test statistic, substituting the MLEs of the
covariance matrices into their respective likelihood functions and performing some algebraic ma-
nipulation, GLR is

A = JJ t (88)

b

which Is still a function of the unknown returned amplitude. Expanding the determinants in the
preceding GLR and completing the square with respect to b, results in
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Np 1z4- Z'-Z, (89)
A = l wI{+Zi7z±Pli b~- 12~ 2.(89)•=l .• H t H II HS-z12 PHS•'Iz•i:

Mjn11+z!'Si- lzip ~s I• p b-P i E- p- H•i
iIP •' P l S P I P

b

where

K

S, = E-z(k)zl,(k)
s=1

Observing Equation (89), the maximization of the GLR with respect to b requires the solution of
a 2 Np-degree polynomial.

A suboptimal solution technique suggested by Kelly [8,12] begins by defining a new parameter

SH" -' (90)

In terms of bi, the GLR is

N, 1+zS'z

A Nf 1Z?'S-1 z,A = ui Ip - (91)

b

With the definitions

A0 H- (92)

and

SHi ,4 (93)
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the likelihood ratio can be expressed as

A A ' oi + v, lb- bi• - r A0, rl' 1 + Vi, b - b-i (94)

At each time instant i throughout the observation interval, the term bi is equivalent in form
to the minimum variance estimator of the true returned amplitude. Assuming reasonable SNRs
(or alternatively, high quality covariance estimates), the difference b - bi should be relatively small.
Given this assumption, the GLR expressed in Equation (94) is expanded using the following identity.
The series expansion for a fraction of the form (1 + x)- 1 is

1 1 X +X2 (95)

1+x

If x is small, the series can be truncated after the first-order term without much loss in a"curacy;
therefore, equating x to b - b,, the GLR can be approximated by

N, N,,r ( +V lb -b-12) hA0 j1  - Vi lb -i) . (96)

The approximate result in Equation (96) must still maximized with respect to the unknown
parameter b. Only the summation is a function of b; therefore, concentration is solely on the term
F, NIVb - .12. Defining the term SD(b) as

N,

SB(b) = i b- bu12  , (97)
i-1

the magnitude squared term is expanded to obtain

SB(b) = Ib12 E V -2ReAb° V~b, + Vtibil2 2(98)

Completing the square with respect to b yields

Np, N Np

SB(b) = Ib-bt2  V,+ZV,1b112 -- I 2  
. (99)

I-i i l s--i
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where

NVp

VI

The estimator b is a normalized, weighted sum that is an approximate MLE of the returned
amplitude. In a stationary environment, the expected value of each V1 would be equal; therefore,
under stationary conditions the expected value of the estimate would be the average of the Np
independent minimum variance unbiased estimates of the returned amplitude. The V1 terms may
be viewed as weights that are proportional to the SNR. In a nonstationary environment the coherent
estimator will place a greater emphasis on estimates obtained from high SNR conditions as opposed
to conditions where there is much interference.

By substituting b for b in the expression for SB(b), the minimum value is obtained and is
denoted as SB:

i -

As a result, the final form of the likelihood ratio is

Np

A =(1-B) Ao, (101)
i=1

4.2 The Statistical Analysis of the Coherent GLR Test

The coherent decision rule bears some resemblance to the noncoherent decision rule. Each
A0o of Equation (101) is the likelihood ratio term found in Section 3. Hence, in statistical terms
the coherent likelihood ratio is the product of (1 - SýS) and the product of Np O-distributed r.v.'s.
Because the coherent likelihood ratio contains another level of complexity beyond the noncoherent
likelihood ratio, i.e., the presence of (1 - SB), it is not expected that analysis will yield an exact
statistical characterization of the test. For the sake of completeness, the statistics of SB are now
examined.

Following standard multivariate statistical analysis procedures and steps presented earlier, the
primary and K secondary vectors are whitened and rotated. Coordinate rotation is accomplished
via a unitary transformation that places the nonzero mean component of the primary data vector
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into the vector first element. The whitened, rotated, Gaussian N-vectors defined in terms of the
partitioned components are

p=[1 0...0] , (102)

Z= [ZA ZBIT

= [ SAA SAD]
SBA SBB

and

Pi PA PAD]
PBA PBB

where

The matrix Pi is the inverse of K times the sample covariance formed from the secondary vectors
at time instant i. The partitions of zj , Si', and Pi are implicitly understood to be functions of
time. The subscript i is suppressed to make subsequent formulas easier to read.

Next SB is expressed in terms of the partitions. (A more detailed description of the terms
that follow can be found in Section 2.) For clarity the r.v. T, is again defined:

1 =SS (103)
Ti - I P SSAA-SABS-pSBA

Ti is an unconditional central X2 r.v. with L = K - N + 1 dof. The complex amplitude estimator
bi possesses the form

b6 = ZA - SABSBHZB (104)

The parameter bi is itself a conditional Gaussian r.v. and is the prediction error of ZA given zB.
The #-distributed loss factor pi is defined:
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1
Pi = 1 + 2•s-za (105)

Using these definitions, Vi in terms of the partitions [see Equation (95)] is

_i =AA A (106)

which is conditionally distributed as the inverse of a X2 r.v. Expressing SB [see Equation (102)) in
terms of the partitioned components results in

Np ZA-SABS 1 Za

NPZA-SARS anN, S - T _ _ _,_

SB= ' (i+zgsipz) - _ _, (107)

or equivalently, as

N, /, N 2

SS z.,•,- N, (108)

t=I

where

V- = Z BSýB (109)
(1 + 4 'ZB

Section 2 showed that each {v112I/T term is conditionally F-distributed; therefore, the first
summation in SB in the sum of Np conditional F r.v.'s. The second term in SB is examined in
two parts. The denominator, where each Vi is equivalent to pi/T,, is conditionally distributed as
the sum of the inverse of a X2 r.v. The individual terms in the numerator summation, Vibi, are
equivalent to
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(ZA-SADSn_'ZR)
= I+zHSB (110)

Ts

Each term in the summation F , is the ratio of a conditional normal r.v. and a X2 r.v. The
overall numerator term is the square of the sum of N. such terms. Unfortunately, the resulting
distribution is not of a common form. The distribution of the ratio of the square of this sum and
the denominator term must also be determined. The second part of SB is practically impossible to
analyze.

The exact statistical characterization of the coherent decision rule, let alone expressions for

the PD and PPA, is virtually impossible to obtain; therefore, the performance of the decision rule
is evaluated experimentally, using Monte Carlo simulations.

4.3 Simulation Results

Because statistical analysis of the coherent decision rule is so cumbersome, Monte Carlo .imu-

lations were used to obtain performance measures. The threshold value corresponding to a specifed
PFA was experimentally obtained and then used in the evaluation of the PD. The performance of
the coherent decision rule is analyzed in both stationary and nonstationary environments. Coher-
ent detector performance (assuming an unknown true covariance matrix) is shown to exceed the
performance of a detector derived from the noncoherent, known covariance matrix.

The coherent decision rule upon which the subsequent results are based is

NP

where a is the threshold parameter. In Section 4.2, the exact statistics of SB proved to be unob-
tainable; therefore, the test statistic must be evaluated using the raw data zi and zj(k) which are
multivariate Gaussiin random vectors. Using Equations (4), (6), (7), and (15), the decision rule
can be computed sirmply in terms of zi, zj(k), which is used to evaluate S-1, and the steering vector
p.

Because the steering vector enters the decision rule, a particular array geometry must now
be assigned. A uniformly (half-wavelength) spaced linear array was chosen for the sake of compu-
tational simplicity. The N-element steering vector for this array geometry is

p = Ile- ... e-1] (112)
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Again, for simplicity, the target is assumed to be located broadside to the array. The steering
vector under this assumption has the following form:

p =-[1 1 ... 1] (113)

Without changing the test, p is redefined as a unit vector.

The noise environment is composed of directional interference in addition to Gaussian back-
ground noise, Assuming that the jth directional interference source is narrowband, locat. d in the
far-field, and that its power is denoted as a?, the total noise covariance matrix can be representcu
as

NJ

M2 q, (114)
j=1

where N, is the number of interference sources, ac is the interference power, and %1 is the steering
vector of the interference.

The vectors zi and z1(k) both share the covariance matrix Mi. To create multivariate Gaus-
sian random vectors with covariance Mi, the zero-mean N-vectors z•, and zi(k) are formed first,
using a random number generation program. Because the elements of ".ese data vectors are sta-
tistically independent, the resulting covariance matrix is the identity matrix. -i he data vectors are
then statistically transformed to possess the desired covariance using the Choi.sky factorization of
the true covariance matrix. The Cholesky factor Ci, which is defined CyCi = Mi, is applied to
the data in the following manner:

zi = C,zwi (115)

zi(k) = Cizi(k) (116)

The covarlance matrix of the respective transformed data vectors is now the desired covariance
Mi. For Gaussian white noise processes, the transformation using the Cholesky factorization is not
necessary.

Under H1 , the expected value of the primary vector zi is bp. To form a nonzero mean
primary, b p is added to the random primary vector. The value of b, which correspcnds to the
target radar cross-sectional area. is computed assuming that the covariance matrix is the identity
matrix. rhe known white-noise case is used as a reference for two reasons. First, assuming that the
noise is white with unit variance and the steering vector is of unit leng-th, the ideal nonadaptive SNR
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reduces to lb!2. Second, the reference SNR is now independent of jammer locations and powers. As
a result, we can maintain constant SNR while varying the noise environment over an observation
interval; therefore, all subsequent tests use the same target returned power for a particular SNR,
which results in valid comparisons. The mean returned amplitude value is

b = 10'P ,(117)

where the SNR is in decibels. At i, the matrix S"1 is obtained by forming the outer product of K
secondary vectors, summing the outer products together and computing the inverse. The discussion
of the creation of all the constituent components of the decision rule is now complete.

As previously stated, the threshold cannc- be explicitly calculated and must be evaluated
numerically. In the discussion of the simulations used to obtain the performance characteristics of
the noncoherent detector, the reasons for the choice of PFA = 0.01, although very high for radar
systems, were explained. Assuming that the overall detection scheme incorporates M out of N
decision rules, the resulting PpA can be brought down into acceptable levels for radar. Also, the
number of computations required to produce statistically significant results is drastically reduced
whei. compared with the required number of tests conducted under extremely small PFA conditions.

The PFA is computed under the assumption that the primary data is zero-mean. For a given
noiFe er.vironment structure, 10,000 zero-mean primary data vectors were used as inputs to the
coherent decision rule. At each i during the N1, pulse observation interval, a new covariance estimate
was formed. The decision rule outputs were then used to create a sample pdf. The threshold value
corresponding to PFA = 0.01 was then calculated using the definition of the cumulative distribution
function. This process was repeated several times, and the average of the threshold values was used
to evaluate the ROC.

As per the analysis of the noncoherent detector, the performance of the coherent detector
is analyzed as a function of K and Np. In addition, the coherent detector is studied under both
stationary and nonstationary noise conditions. For all cases examined in the sequel, the PFA was
set to 0.01. The Pr) at a particular SNR wa& evaluated using 1,000 trials.

The performance of the coherent detector was evaluated with N, thc number of array elements,
set equal to 4. The pkrticular value of N affects the performance of th, detector only through the
parameter L; therefore, the results for N = 4 can be extrapolated to 'iir' -r-sqzed arrays by varying
K. The added ',eijefit of a sma',l N value is that the number of computat icliu. i significantly reduced
due to smaller vector sizes.

For the current anal3 sis the known covariance case is used as the benchmark reference. The
performance of the nuncoherent detector under known covariance conditions is obtained using
the Marcum-Q function. The Marcum-Q designation In the legends of Figures 9-11, 14, and 17
corresponds to this casc. The performance of coherent detector under these conditions was obtained
as follows. Because the covariance is assumed knorn, the secondaries do not provide any additional
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information and are dropped from the likelihood functions (which are the product of Np identical
multivariate Gaussian distributions, where the true mean value is unknown under hypothesis HI).
After some algebraic manipulation, the final form of the GLR test takes the form

Np 2

ZPiM-l zi
i=1>

A (118)

EPHM- 'p
i= I

After performing a whitening transformation and a coordinate rotation, the test can be shown
under Ho to be equivalent to a central X2 r.v. with one complex dof. The threshold value for the
required PFA is the logarithm of the PFA. Under HI, the test is distributed as a noncentral X2 r.v.
with one complex dof and a noncentrality parameter c = Np SNR. The cdf of this Riclan r.v. is
evaluated using the Marcum-Q function. The ROC corresponding to the coherent detector under
known covarlance conditions is designated KNOWN COVARIANCE in the figures.

Detector performance is now examined in greater detail. It is assumed that the noise envi-
ronment is known at each i whether it is stationary or nonstationary; therefore, as long as the type
of noise environment that is present during the ith sample interval is known, the interference is
always nulled (if present) due to the Si-1 term found in the decision rule. Detector performance
is essentially independent of the time-varying nature of the noise environment if the covariance
matrix is continuously updated.

A typical case, Np = 4 and K = 20, is shown in Figure 9. The coherent detector clearly
outperforms the noncoherent detector examined in Section 3. In fact, the coherent detector requires
about 1 dB less signal power in the low SNR region of the ROC than the known covariance matched
filter represented by the Marcum-Q curve. For this value of K, coherent detector performance is
down only I dB from optimal levels. The improved performance under the stated conditions
provided by the coherent detector was found to occur for all values of Np that were examined.

From previous analyses the number of secondary data vectors has been shown to play a major
role in the performance of the GLR test-based detectors. Figures 1 and 3 illustrate the asymptotic
nature of performance of these detectors as a function of K. For the coherent detector, Figure
10 shows that K is a controlling factor. Only when K exceeded 16 did the performance surpass
that of tle noncoherent, known covarlance case. As K increases from 20 to 30, the ROC begins to
appioach the theoretical maximum. As the number of pulses in the observation interval is increased,
the number of secondaries needed to surpass optinal noncoherent detector performance increases
(see Figure 11).

Because of integration gain, as the number of pulses in the observation interval is increased
the coherent detector shouid provide increased the performance (less SNP. required to achieve a
specified PL,). Figure 12 illustrates the ROC for the reported standard array size and K = 30
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Figure 9. Performance comparison between detectors.
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Figure 10. Coherent detector performance as a function of K for NP= 4.
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Figure 11. Coherent detector performance as a function of K for Np= 10.

as a function of Np. These simulation results follow the ROC curves of the matched filter as a
function of the number of samples, i.e., the curves move upward and leftward as Np increases. The
observation that the integration gain effectively reduces the SNR required to achieve a specified PD
is verified in Figure 13 for N = 4 and K = 30.

The performance of the coherent detector, given a wide variety of noise and interference
environments, is now examined. The presence of the inverse of K times the sample covariance in
the decision rule suggests that directional interference should be effectively nulled if K is sufficiently
large. The effect of different interference powers and the number of jammers on coherent detector
performance are considered. To perform this analysis, a stationary environment is assumed by
holding the jammer power and the number of jammers fixed over the observation interval. These
constraints will be relaxed and their effects examined. Figure 14 shows detector performance for2/a2
two different janimer-to-noise ratios (JNRs) as virtually identical. JNR Is defined as ajN/-. Under
both JNR scenarios and white noise conditions, coherent detector performance is superior to that
of the noncoherent matched filter. Figure 15 portrays the effect of the number of interferers. The
detector produces essentially identical performance levels regardless of interference structure.

At this point in the analysis it is clear that as long as K is sufficiently large and the statistics
of the noise environment are known at each sauaple instant, the coherent detector outperforms the
noncoherent detector and the noncoherent matched filter detector. It should be noted that the
actual interference directions do not affect performance unless they lie inside the main lobe of the
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Figure 12. Coherent detector performance as a function of Np.
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Figure 13. SNR Required for PD = 0. 9 as a function of Np.
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Figure 14. Coherent defector performance as a function of JNR.
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Figure 15. Coherent detector performance as a function of number of jammers.
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array pattern. For N = 4, the main beam ranges between ±300. If a jammer lays inside the main
lobe, performance is seriously degraded.

So far, the ability to continuously update the covariance estimate has been a basic premise
of this study. In actual practice this procedure involves collecting a large number of data vectors,
forming outer products, and taking the inverse of an N x N matrix. Much processing is required
and could be very expensive. The issue of a limited number of covariance estimates during an
observation interval is now addressed.

The stationary noise environment is examined, and two extreme cases are considered. Figure
16 compares the performance of the coherent detector using a single and a continuously updated
covariance estimate. In a stationary environment the additional covariance estimates provide little,
if any, additional benefit. As in case 2, by rotating the data via a unitary transformation, the
problem can be reduced to a single primary vector along with K x Np secondary vectors. For a
fixed number of array elements, however, a large increase in the number of secondaries (greater
than 20 for N = 4) provides only small increases in performance; therefore, the results illustrated
in Figure 16 are consistent with existing results.

1.0

S.8SI'NGLE COVARIANCE ESTIMATE
0.8

NP COVARIANCE ESTIMATES N 4
0.6 Ka 20

NW. 10
PI:A - 0. 01

0.4 I IO
0 5 10 15 20

SNR (dB)

Figure 16. Coherent detector performance in a stetionary estmnvnme1t.

The main goal of this study was to develop a detector that would exceed noncoherent miatched
filter performance levels in stationary and nonstationary noise environments. It remis to examine
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the performance of the coherent detector in nonstationary environments with a limited number of
covariance estimates. The blinking jammer is an extreme case of a nonstationary noise environment
where the jammer randomly switches between ON and OFF. While OFF, the noise is simply white.
If the covariance estimate can be continuously updated regardless of the jammer state, the coherent
detector can achieve maximum performance because its structure enables it to effectively null out
the jammer at each time instant. If the number of estimates is limited throughout the observation
interval, the performance is expected to degrade for the following reasons. Suppose only a single
covariance estimate is made at the beginning of the data collection period. If the jammer is ON,
it could be nulled out at any time during this period; however, if the jammer is OFF during the
single sample of the K secondaries, the sample covariance matrix under these conditions is not able
to provide nulling capabilities. The result is performance loss.

Figure 17 provides a comprehensive review of these possible conditions in a nonstationary
environment. (For reference purposes, the curve corresponding to continuous covariance updating
is included.) Switching between ON and OFF was uniformly varied during the observation interval.
The single covariance white noise curve corresponds to the case where the eqtimate contains only
white noise. Performance under this condition is down 5 dB when compared with the reference at
PD = 0.09; however, when the estimate includes the effect of the jammer, performance is equivalent
to that of the reference case. Because the number of noise-only and jammer-plus-noise samples were
equally likely, it is not surprising that the average performance curve lies roughly halfway between
the two previously mentioned cases.

1.0 -

Np COVARIANCE ESTIMATES
0.8 J + ISE

AVERAGE PERFORMANCE N&-4
Ke 30

0.81MFI Np- 10

F W~rMNOSEONLYPFA - 001

0.4
0 5 10 15 20

SNR (dB)

Figure 17. Coherent detector performance under blinking janmmer conditions.
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The conclusion reached from these results is that if the noise environment rapidly fluctuates,
it pays to frequently update the covariance estimate; also If a sufficient number of secondaries is
used, the coherent detector will exceed the noncoherent matched filter levels even though the true
covariance matrix is both unknown and time varying.

4.4 Summary of Results

A coherent detector that is based upon an approximate GLR test has been presented. The
approximation was required to enable the maximization of the test with respect to the constant
unknown returned amplitude b. The detector was manipulated into a form such that the test is the
product of the noncoherent decision rule and the term (1 - SB). Beyond a certain number of sec-
ondaries, the coherent detector performed very well, always surpassing noncoherent matched filter
and noncoherent detector performance levels. Even under extreme conditions of nonstationarity,
the coherent detector produced very good results, especially when continuous covariance estimate
updating was allowed. In conclusion, the coherent decision rule yields excellent adaptive detection
performance in both stationary and nonstationary noise environments.
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5. CONCLUSIONS

Two new multiple-pulse GLR test-based detectors that provide excellent performance in non-
stationary noise environments have been presented. Due to the complexity of the analysis, little
work has been done in the analysis of nonstationary systems; however, because nonstationary noise
environments are quite typical in the radar context, the results obtained in this study are impor-

tant. One of the strengths of this analysis is that only precise analytical techniques were considered
as opposed to commonly used ad hoc methods.

The analysis of the coherent and noncoherent detectors are extensions of the single-pulse de-
tector that was completely analyzed by Kelly. The single-pulse decision rule was derived under the
assumptions that the true covariance matrix and the complex returned amplitude were unknown
parameters. To overcome covariance estimation losses that degraded detection performance, addi-
tional signal-free data vectors were incorporated into the decision rule that resulted in markedly
improved performance. The decision rule was shown to be statistically equivalent to the inverse of

a conditional p3-distributed r.v.

The multiple-pulse GLR test was also formulated using additional secondary vectors. Also, the
true covarianct matrix w&s allowed to vary over the Np pulse sampling intervals. Unfortunately,
the maximization of the likelihood ratio with respect to the returned amplitude proved to be
mathematically cumbersome, and to cope with this problem two different solution techniques were

considered.

The first solution was to allow the model for the rignal amplitude to be time varying with
the resulting test statistically equivalent to the product of Np O3-distributed r.v.'s. By taking
the logarithm of the product, the test involved the summation of Np independcnt r.v.'s being
compared to a threshold, hence, the noncoherent detector nomenclature. Through the judicious
use of a transformation, the threshold value was readily obtained. The exact analysis of the test

under HI was shown to be virtually impossible, but a Chernoff bound was derived. As the number
of secondary vectors used for covariance estimation increased, simulations showed that noncoherent
detector performance approached matched filter levels.

The second solution technique involved the use of an algebraic identity that enabled the
test to be expressed as a series expansion. Truncating the series after the first term allowed the
test to be maximized with respect to the unknown returned amplitude. Because tf'- ,omplete
observation interval (corresponding to coherent processing) was used to evaluate the maximum
likelihood estimate of b, the detector was designated as coherent. The exact statistics of the
coherent decision rule were not obtained and Monte Carlo simulation was used to generate ROCs.
As expected, the coherent detector surpassed the performance of the noncoherent detector for
the same number of secondary vectors and the coherent detector asymptotically approached the

coherent, known covariance detector performance levels. The coherent detector even proved capable
of handling the highly nonstationary blinking jammer.
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In conclusion, both the coherent and noncoherent structures provide a framework to analyze
detection performance in nonstationary noise environments. The results show that given sufficient
processing power and a reasonable number of terns available for covariance estimation, detectors
can be designed to operate in rapidly fluctuating environments. In particular, the coherent detector
can provide almost optimal performance levels despite the necessity of estimating the covariance
matrix and that the true noise statistics are time varying.

6
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